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Direct Numerical Simulation DNS: 
Maximum Error as a Function 

of Mode Number 

Leland Jameson 

Abstract 
Numerical errors can be characterized in terms of algebraic polynomial 

approximation of a sine wave. The magnitude of the error will, therefore, 
depend on the energy at each mode in a Fourier expansion. Flows with a 
great deal of energy in the highest modes, such as Turbulence, are therefore 
the most difficult to approximate. 
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1 Introduction 

Direct Numerical Simulation, DNS, is generally thought of as resolving all 
scales in a calculation. Scales are usually correlated in a global sense to 
the highest mode in a Fourier series expansion and one generally considers 
spectral methods as the best numerical candidate to obtain true DNS. In 
other words, at a given time in calculation the fields will have a Fourier 
Series expansion of the form, 

Y- f(z) = C ckeikz, 
k=O 

and one often says that the calculation is “resolved” if, in the case of spec- 
tral methods, there are N grid points and, hence, N/2 modes. The critical 
point to be made here is that the temporal discretization is almost always 
ignored in this context. But, the temporal discretization is as important as 
the spatial discretization and in order to state that a given calculation is “re- 
solved” it must be resolved in both space and time and not simply space, as 
is often miss-stated. For spectral calculations a common temporal discretiza- 
tion is through the class of Runge-Kutta schemes. Runge-Kutta schemes are 
very reliable and probably the best choice for spectral discretization, but they 
are fundamentally based on an algebraic polynomial approximation through 
a Taylor series. In the early 80’s, [?I, there was some activity in using spectral 
methods for temporal advancement as well as spatial discretization, but such 
methods never became widely used. So, even with spectral methods we are 
confronted with the fact that the faithfulness of our DNS will be limited to 
the quality of our algebraic polynomial approximation in time to our Fourier 
expansion. 



2 Spectrum and Errors 

Our primary concern here is the numerical error committed at a given step 
during a simulation. During a given step can assume that the spectrum is 
constant with respect to time. Of course, over an entire simulation, this 
will certainly not be the case, but for one individual time step it is a fair 
assumption. 

A function of interest will have a certain spectrum which most likely 
decays with increasing mode. That is, we can expect our function to have 
the form, 

where we can expect that the spectrum represented by ck will decay. For 
example, it might be ck = eCk or perhaps ck = ePk2. we can see from 
([a]) that the truncation error was calculated for each mode and that the 
truncation error grows with mode. However, when we add in the spectrum 
ck then we can expect that the error will peak at some wavenumber between 
the lowest wavenumber and the highest. To illustrate further, suppose our 
function is, 

f(x) = C eeck2)eikz, (3) 

from which we get that, 

f(P)(x) k<~,2(ik)Pe-(kz)e’k”, 
- 

(4) 

and we can see that this expression is bounded above by 

B(k) = kpeeck2), (5) 

which is the product of the spectrum and ICP which comes from the differentia- 
tion. This function, B( Ic), will have a maximum value at a given wavenumber. 
It is this maximum error that we focus on obtaining in this manuscript. Ob- 
taining the maximum value for B(k) for various flows is critical to obtaining 
estimates on the reliability of a given calculation. 



2.1 Finding the Maximum Spatial Error 

Here we will focus on the case of finding these maximum error values for 
finite difference operators. Other types of differentiation operators such as 
compact, finite elements, etc. are a straightforward extension of the approach 
outlined here. 

Now consider the expression derived in ([2]) for the upper bound on the 
differentiation error, 

(6) 

where h denotes the distance between grid points (assumed uniform here), 
p denotes the numerical order of accuracy, and k denotes the wavenumber. 
Recall this expression was derived for ck = 1 for all k. For an arbitrary 
spectrum ck the upper bound on the error becomes, 

kP+l 

E(h?P,k) = hp((d2)92cp+ $k. 

Now let h and p be fixed and find the maximum value of this error with 
respect to the mode number k. In this case we get, 

E(k) = Const(h,p)kpS1ck, (8) 

where, 

Const(h, p) = hP((d2)!)2 
(p+l)! . 

Consider k as a continuous variable and differentiate the above expression 
for E(k) with respect to k to get, 

E’(k) = Const(h,p)((p + l)kpck + kp+lc;). (10) 

Setting this expression equal to zero, one gets, 

(p + l)c,+ -t kc’, = 0, 

which is the key expression that must be solved in order to find the maximum 
value of the error. Note that this error does depend not only on the spectrum 
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and the wavenumber but also on the numerical order of the scheme at hand. 
If perchance the spectrum is time evolving, i.e., ck = C&(t) then the above 
expression would certainly hold for each value of time to get, 

(p + l)q(t) + k$‘:n(“) = 0. 

In the next few subsections we will find the maximum errors for various 
spectra of interest. 

2.1.1 Maximum Spatial Error for ck = eCdk. 

For ck = eCdk we see that, 

or simply, 

((p + 1) - dk)e-dk = 0, 

kxp+l 
d ’ 

And, we expect that our maximum error will be bounded above by, 

2.1.2 Maximum Spatial Error for ck = eCdk2. 

For our second spectrum ck = eCdk2 we arrive at, 

((p + 1) - 2dk2)e-dk2 = 0, 

or the maximum error will occur at 

(13) 

(14 

(15) 

(16) 

k. p+’ 
d 2d ’ (17) 

In the same manner as above, one can find the maximum error to be, 

p+l (PS1)/2 
Emaz(h,p, d) = hp((i)!)2( ;$ 1), e--(P+1)/2. (18) 
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2.1.3 Algebraic Decaying Spectrum: ck = k-“. 

Finally, one of our most important examples is the case when ck = k-“. 
From above we see that the character of the error, E(k) = Const(h,p)kp+‘ck, 
changes drastically depending on if m is less than or greater than p + 1. 
For m < p + 1 we see that the error bound will always grow with respect 
to k which means that our errors will be dominated by the error at the 
largest wavenumber. On the other hand, if m > p + 1 then the error is 
a monotonically decreasing function with respect to k and our errors are 
dominated by the errors at the lowest mode. Neither situation is desirable 
sipe the errors at these extremes are quite large. 

2.1.4 Maximum Spatial Error for Turbulent Flow: ck = k-5/3e-ck/kkol. 

One possibility for a turbulent spectrum is, ck = k-5/3e-ck/k~o~, ([3]). The 
calculation for this spectrum yields, 

k = +(5/3 - (p + I)) (19) 

2.1.5 Maximum Spatial Error for ck = kmeAakb 

With this spectrum we first find the derivative of f& to get, 

& z ema’ bkm-l(m - abk*). (20) 

Using this expression we get, 

kmewukb(p + m - abkb + 1) = 0, 

or the maximum error occurs at mode, 

k=( (22) 

2.2 Finding the Maximum Temporal Error 

Deriving a similar expression for the temporal error, one finds that the max- 
imum temporal error for Runge-Kutta Schemes occurs at the mode k satis- 
fying, 

pck + kc’, = 0. (23) 
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In a manner completely analogous to that above, one can find the maximum 
temporal error for the Runge-Kutta class of time advancement for various 
spectra. We find this error for one representative spectrum. 

2.2.1 Maximum Temporal Error for ck = ewdk. 

We can easily find that the maximum error occurs at, 

k= f, 

and one finds the maximum error to be, 

Emaxtime = y-’ ($,u,-P. 

(24 

(25) 
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Calculated and Theoretical Linf Derivative Error 
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Figure 1: Differentiation error for various schemes applied to data with a 
spectrum ck = k- 5/3e-5k/ko. FD2 (labeled with o), FD4 (labeled with tri- 
angle), FD8 (labeled with a diamond) and a Fourier spectral method (la- 
beled with an asterisk). Actual pointwise errors and theoretical upper bound 
curves. The number of grid points is 32 hence one can observe aliasing in 
the spectral curve. 

10 



Calculated and Theoretical Linf Derivative Error 
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Figure 2: Differentiation error for various schemes applied to data with spec- 
trum ck = eek. FD2 (labeled with o), FD4 (labeled with triangle), FD8 
(labeled with a diamond) and a Fourier spectral method (labeled with an 
asterisk). Actual pointwise errors and theoretical upper bounds. Theoretical 
maximum is given by the plus line. The number of grid points is 64, therefore 
no aliasing can be seen in the spectral curve. 
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Figure 3: Differentiation error for various schemes applied to data with spec- 
trum ck = e -k2/10 FD2 (labeled with o), FD4 (labeled with triangle), FD8 
(labeled with a diamond) and a Fourier spectral method (labeled with an 
asterisk). Actual pointwise errors and theoretical upper bounds. Theoretical 
maximum is given by the plus line. The number of grid points is 64, therefore 
no aliasing is seen. 
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Figure 4: Here we observe the errors for Runge-Kutta time advancement. 
Errors are shown for RK2, RK4, and RK6. ck = e-k 
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Figure 5: Error for FD2, FD4, FD8, and spectral. c,+ = l/k. Note that this 
spectrum would be similar to that of a shock. Note how the error is always 
increasing. 
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Figure 6: Error for RK2, RK4, and RK6. ck = l/k Again, the spectrum is 
that of a shock. 
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3 Conclusion 

In this manuscript we have derived expressions which give us the maximum 
error that a given differentiation operator will commit for various spectra. 
We have confined our discussion to this operator since it is clearly the most 
important operator in the numerical solution of partial differential equations. 
It is critical to obtain this estimate of error in order to obtain an estimate of 
the reliability of Direct Numerical Simulation of Turbulent or other flows. 
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